Rational Approximation and n-Dimensional Diameter*

Harold Widom
Department of Mathematics, University of California, Santa Cruz, California 95060
Communicated by Samuel Karlin

Received September 8, 1969

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75 TH BIRTHDAY

1. Introduction

Any function, analytic on an open set Ω in the extended complex plane, can be uniformly approximated by rational functions on each closed subset of Ω. This is one version of the Runge approximation theorem. There arises naturally the question of how well such approximations can be effected. It is this question, and some related matters, that form the subject of this paper.
To set things up precisely, let A denote the set of those functions f which are analytic in Ω and satisfy $|f| \leqslant 1$ therc. For each $f \in A$, and for each closed set $K \subset \Omega$, let

$$
\begin{equation*}
r_{n}(f)=\inf _{R} \max _{z \in \mathbb{K}} \mid f(z)-R(z)!, \tag{1}
\end{equation*}
$$

where R runs through all rational functions of degree (number of poles in the extended plane) at most n. Finally, let

$$
r_{n}=\sup _{f \in A} r_{n}(f) .
$$

Thus, r_{n} is a measure of how well the functions in A can be approximated by rational functions of degree n.
Runge's theorem asserts that the rational functions of approximation may be taken to have poles lying outside Ω. Thus, we also define quantities $\tilde{r}_{n}(f)$ and \tilde{r}_{n}, analogous to $r_{n}(f)$ and r_{n}, but where the rational functions R appearing in (1) are required to have their poles outside Ω.

Another measure of how well functions of A can be approximated on K

[^0](C) 1972 by Academic Press, Inc.
is the n-dimensional diameter of A considered as a subset of the space of continuous functions on K. This is defined as
$$
d_{n}=\inf _{E_{n}} \sup _{f \in A} \operatorname{dist}\left(f, E_{n}\right) .
$$

Here E_{n} runs through all n-dimensional linear spaces of continuous functions on K and the distance is taken in the metric

$$
\begin{equation*}
\operatorname{dist}(f, g)=\max _{z \in K}|f(z)-g(z)| . \tag{2}
\end{equation*}
$$

Thus d_{n} is a measure of how well functions of A can be approximated on K by functions from some n-dimensional space of continuous functions. We shall see that for n large a certain space of rational functions gives almost as good approximations as any space.

The main result of this paper is that with some mild restrictions on K and Ω we have

$$
\lim _{n \rightarrow \infty} 1_{n}^{1 / n}=\lim _{n \rightarrow \infty} \vec{r}_{n}^{1 / n}:=\lim _{n \rightarrow \infty} d_{n}^{1 / n}=e^{-1 / C(K, \Omega)}
$$

where $C(K, \Omega)$ is the Green capacity of K relative to Ω. This capacity is defined to be least upper bound of $\mu(K)$ for all nonnegative Borel measures μ supported on K and satisfying

$$
\int g(z, \zeta) d \mu(\zeta) \leqslant 1, \quad z \in \Omega .
$$

Here $g(z, \zeta)$ is Green's function for Ω.
We should mention that $g(z, \zeta)$ exists only if $\partial \Omega$ has positive (logarithmic) capacity. However if $\partial \Omega$ has zero capacity then A consists only of constant functions (any bounded harmonic function on Ω may be extended to be harmonic on the entire extended plane [7, Theorem III.29] and so is constant), so for any K we have $r_{n}=\tilde{r}_{n}=d_{n}=0$. We may assume therefore that $\partial \Omega$ has positive capacity.
Particular cases have been previously established in different forms. Erokhin [2] showed that if Ω is simply connected and K is a continuum then $\lim d_{n}^{1 / n}$ is the reciprocal of the modulus of the doubly connected domain $\Omega-K$. In certain cases where Ω and K are bounded by finitely many analytic Jordan curves Levin and Tichomirov [5] expressed $\lim d_{n}^{1 / n}$ and $\lim \tilde{r}_{n}^{1 / n}$ in terms of the flux across appropriate curves of the harmonic measure of K with respect to $\Omega-K$. See also [8, Chap. IX] for upper bounds on \tilde{r}_{n} in certain cases.

The limiting behavior of d_{n} for large n gives an asymptotic formula for the entropy of A with respect to the metric (2). The ϵ-entropy $H_{\epsilon}(A)$ is the logarithm of the smallest number of sets of diameter at most 2ϵ which cover A.

Then

$$
\lim _{n \rightarrow \infty} d_{n}^{1 / n}=e^{-1 / C(K, \Omega)}
$$

implies

$$
\lim _{\epsilon \rightarrow 0} \frac{H_{\epsilon}(A)}{\left(\log \epsilon^{-1}\right)^{2}}=C(K, \Omega)
$$

See [5, section 5] or [6, p. 164].
The lower bound for d_{n} is obtained, interestingly enough, by showing that a certain Riemann boundary value problems has many solutions. As far as we know this is the first application of the Riemann problem to approkimation theory.

Another related matter is the following. Let K_{1} and K_{2} be arbitrary disjoint closed sets (of positive logarithmic capacity) in the extended plane, and set

$$
s_{n}=\sup _{R} \frac{\min \left\{|R(z)|: z \in K_{1}\right\}}{\max \left\{|R(z)|: z \in K_{2}\right\}}
$$

where the supremum is taken over all rational functions of degree n. Let K_{1}^{\prime} denote the complement of K_{1}. Then it is known that

$$
\begin{equation*}
s_{n} \leqslant e^{n / C\left(K_{2}, K_{1}^{\prime}\right)} \tag{3}
\end{equation*}
$$

(See [4] for the case where K_{1} and K_{2} are continua and the inequality stated in a different form; see [9] for the general case.) We shall show here that the constant $C\left(K_{2}, K_{1}{ }^{\prime}\right)$ is best possible in the sense that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}^{1 / n}=e^{1 / C\left(K_{2}, K_{1}^{\prime}\right)} . \tag{4}
\end{equation*}
$$

2. Some Basic Facts

We list here some facts about the capacities $C(K, \Omega)$ that we shall need later.
(a) There is an equilibrium measure μ on K satisfying

$$
\begin{gathered}
\mu(K)=1 \\
u_{\mu}(z)=\int g(z, \zeta) d \mu(\zeta) \leqslant 1 / C(K, \Omega), \quad z \in \Omega
\end{gathered}
$$

(b) This μ is supported on $\partial \Omega$ and $u_{\mu}=1 / C(K, \Omega)$ on each open subset of K.
(c) If $\left\{K_{n}\right\}$ is either a decreasing sequence of closed sets with intersection K or an increasing sequence of closed sets with union K, then

$$
\lim _{n \rightarrow \infty} C\left(K_{n}, \Omega\right)=C(K, \Omega)
$$

(d) If $\left\{\Omega_{n}\right\}$ is either an increasing sequence of open sets with union Ω or a decreasing sequence of open sets with intersection Ω, then

$$
\lim _{n \rightarrow \infty} C\left(K, \Omega_{n}\right)=C(K, \Omega)
$$

Facts (a)-(c) are well-known properties of general capacities. (See, for example, [1].) Moreover, we shall show below (see the remark following Lemma 4 in section 5) that if K^{\prime} is the complement of K and Ω^{\prime} of Ω, then

$$
C(K, \Omega)=C\left(\Omega^{\prime}, K^{\prime}\right)
$$

Thus (d) follows from (c).

3. Upper Bounds

In this section we obtain upper bounds for r_{n}, \tilde{r}_{n} and d_{n}. The main tool is the following lemma. Recall that Ω is called regular if, for each $\zeta \in \Omega$,

$$
\lim _{z \rightarrow \partial \Omega} g(z, \zeta)=0
$$

It follows from Harnack's inequality that this then holds uniformly for ζ belonging to any closed subset of Ω.

Lemma 1. Suppose Ω is regular. Then given $\epsilon>0$ we can find an open set Ω_{1}, satisfying $K \subset \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega$ and whose boundary is a finite union of rectifiable Jordan curves, such that for each sufficiently large n there is a rational function R, of degree n and having all poles outside Ω, for which

$$
\begin{aligned}
& |R(z)| \geqslant e^{-\epsilon n}, \quad z \notin \Omega_{1} \\
& |R(z)| \leqslant e^{-n / C(K, \Omega)+\epsilon}, \quad z \in K .
\end{aligned}
$$

Proof. Let K_{1} be a closed subset of Ω whose interior contains K and such that

$$
\begin{equation*}
C\left(K_{1}, \Omega\right) \leqslant C(K, \Omega)+\epsilon \tag{5}
\end{equation*}
$$

That such a K_{1} exists follows easily from (c). Denote by μ_{1} the equilibrium measure for K_{1} as in (a), so that

$$
\mu_{1}\left(K_{1}\right)=1, \quad \int g(z, \zeta) d \mu_{1}(\zeta) \leqslant 1 / C\left(K_{1}, \Omega\right)
$$

and, by (b),

$$
\begin{equation*}
\int g(z, \zeta) d \mu_{1}(\zeta)=1 / C\left(K_{1}, \Omega\right), \quad z \in K \tag{6}
\end{equation*}
$$

By the regularity of Ω, we can find Ω_{1} satisfying $K_{1} \subset \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega$, and whose boundary is a finite union of rectifiable Jordan curves, such that

$$
\begin{equation*}
g(z, \zeta) \leqslant \epsilon, \quad \zeta \in \partial K_{1}, \quad z \in \partial \Omega_{1} \tag{7}
\end{equation*}
$$

We know from (b) that μ_{1} is supported on ∂K_{1}. Moreover, it is the weak limit of discrete measures. Therefore, we can find a finite set of points $\zeta_{i} \in \partial K_{1}$, and constants α_{i} satisfying

$$
\begin{equation*}
\alpha_{i} \geqslant 0, \quad \sum \alpha_{i}=1 \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|\int g(z, \zeta) d \mu_{1}(\zeta)-\sum \alpha_{i} g\left(z, \zeta_{i}\right)\right| \leqslant \varepsilon, \quad z \in K . \tag{9}
\end{equation*}
$$

If h_{Σ} denotes harmonic measure on $\partial \Omega$ then $g(z, \zeta)$ has the representation

$$
g(z, \zeta)=\log \frac{1}{|z-\zeta|}-\int \log \frac{1}{|z-\xi|} d h_{6}(\xi)+g(\infty, \zeta)
$$

(This particular form of the representation assumes $\infty \in \Omega$, which can always be achieved by a linear fractional transformation.) If $\left\{\Xi_{j}\right\}$ is a finite partition of $\partial \Omega$ which is sufficiently fine, and $\xi_{j} \in \Xi_{j}$, then we shall have

$$
\begin{gather*}
\left|g(z, \zeta)-\left\{\log \frac{1}{|z-\zeta|}-\sum_{j} h_{5}\left(\Xi_{j}\right) \log \frac{1}{\left|z-\xi_{j}\right|}+g(\infty, \zeta)\right\}\right|<\epsilon \\
\zeta \in \partial K_{1}, \quad z \in K \cup \partial \Omega_{1} \tag{10}
\end{gather*}
$$

Define

$$
\beta_{j}=\sum_{i} \alpha_{i} h_{\xi_{i}}\left(\Xi_{j}\right)
$$

Then

$$
\begin{equation*}
\sum_{j} \beta_{j}=\sum_{i} \alpha_{i} \sum_{j} h_{\zeta_{i}}\left(\Xi_{j}\right)=\sum_{i} \alpha_{i}=1 \tag{11}
\end{equation*}
$$

since for each $\zeta, \sum_{j} h_{\zeta}\left(\Xi_{j}\right)=h_{\zeta}(\partial \Omega)=1$.

Let us now combine (10) with (7), (9), (6), and (5). We obtain

$$
\begin{aligned}
& \sum \alpha_{i} \log \frac{1}{\left|z-\zeta_{i}\right|}-\sum \beta_{j} \log \frac{1}{\left|z-\xi_{j}\right|}+\sum \alpha_{i} g\left(\infty, \zeta_{i}\right) \\
& \qquad \begin{cases}\left\{\leqslant, \quad z \in \partial \Omega_{1}\right. \\
\geqslant\{C(K, \Omega)+\epsilon\}^{-1}-2 \epsilon, \quad z \in K .\end{cases}
\end{aligned}
$$

It is a simple exercise, left to the reader, to show that for each integer n we can find numbers a_{i}, b_{j} satisfying

$$
\begin{gathered}
\left|a_{i}-\alpha_{i}\right| \leqslant n^{-1}, \quad\left|b_{j}-\beta_{j}\right| \leqslant n^{-1} \\
n a_{i} \text { and } n b_{j} \text { are all integers }
\end{gathered}
$$

$$
\sum a_{i}=1, \quad \sum b_{j}=1
$$

(The last uses (8) and (11).) Then if n is sufficiently large, the rational function

$$
R(z)=\prod_{i}\left(z-\zeta_{i}\right)^{n_{\alpha_{i}}} e^{-n_{\alpha_{i}} g\left(\infty, \zeta_{i}\right)} \prod_{j}\left(z-\xi_{j}\right)^{-n \beta_{j}}
$$

which has degree n and poles at the $\xi_{j} \in \partial \Omega$ will satisfy

$$
\begin{aligned}
& |R(z)| \geqslant e^{-3 \epsilon n}, \quad z \in \partial \Omega_{1} \\
& |R(z)| \leqslant e^{3 \epsilon n} e^{-n / C(K, \Omega)+\epsilon}, \quad z \in K
\end{aligned}
$$

This is almost the statement of the lemma (with a different ϵ, a matter of no importance). What we have yet to do is extend the lower bound on $|R|$ from $\partial \Omega_{1}$ to the complement of Ω_{1}. But this is automatic, since all the zeros of R lie in $K_{1} \subset \Omega_{1}$.

Theorem 2. We have

$$
\limsup _{n \rightarrow \infty} r_{n}^{1 / n} \leqslant e^{-1 / C(K, \Omega)}, \quad \lim _{n \rightarrow \infty} \sup _{n} d_{n}^{1 / n} \leqslant e^{-1 / C(K, \Omega)}
$$

If Ω is regular,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \tilde{r}_{n}^{1 / n} \leqslant e^{-1 / C(\Omega, K)} \tag{12}
\end{equation*}
$$

Proof. Assume first that Ω is regular and let R be as in the lemma. Take any $f \in A$ and consider

$$
F(z)=\frac{R(z)}{2 \pi i} \int_{\partial \Omega_{1}} \frac{f(\zeta)}{R(\zeta)(\zeta-z)} d \zeta, \quad z \in \Omega_{1}
$$

where $\partial \Omega_{1}$ is given the usual orientation so that the Cauchy integral formula holds. The estimates on R give immediately

$$
\begin{equation*}
|F(z)| \leqslant c e^{\star n} e^{-n / C(K, \Omega)-\epsilon}, \quad z \in K, \tag{13}
\end{equation*}
$$

where c is a constant depending on the geometry of K and $\tilde{c} \Omega_{1}$.
But $F(z)$ is just $R(z)$ times the sum of the residues at the poles of the integrand. There is a pole at $\zeta=z$ and poles at the ζ_{i}, the zeros of R inside Ω_{1}. Consequently, if the multiplicity of ζ_{i} is m_{i} then there are constant $c_{i, k}$ $\left(1 \leqslant k \leqslant m_{i}\right)$ such that

$$
F(z)=-f(z)-R(z) \sum_{i, k} c_{i, k}\left(z-\zeta_{i}\right)^{-k} .
$$

The last function on the right is rational and has poles among those of R. It is therefore at most of degree n. In view of (13) we have established the last statement of the theorem (and also the first for regular Ω, since $r_{n} \leqslant \tilde{r}_{n}$). Moreover, there are $\sum m_{i} \leqslant n$ functions

$$
R(z)\left(z-\zeta_{i}\right)^{-k}
$$

whose linear combinations are the approximants of f. Thus we have also established the second statement of the theorem for regular Ω.
Now assume Ω is arbitrary. We can find an increasing family $\left\{\Omega_{n}\right\}$ of open sets, each regular, whose union is Ω. Since both r_{n} and d_{n} are not decreased if one replaces Ω by a smaller open set, an application of fact (d) yields the first two statements of the theorem.

4. Limiting Behavior of s_{n}

Theorem 3. (4) holds.
Proof. In view of (3) we need only establish the lower bound

$$
\liminf _{n \rightarrow \infty} s_{n}^{1 / n} \geqslant e^{1 / C\left(K_{2} \cdot K_{1}^{\prime}\right)}
$$

Let Ω be a regular open set contained in $K_{1}{ }^{\prime}$ and satisfying

$$
C\left(K_{2}, \Omega\right) \leqslant C\left(K_{2}, K_{1}^{\prime}\right)+\epsilon
$$

(such an Ω exists by (d)) and apply Lemma 1 with K_{2} as K. Then $|\boldsymbol{R}| \geqslant e^{- \text {cn }}$ outside Ω_{1} and so in K_{1}, and

$$
\mid R_{1} \leqslant e^{\left.-n / C K_{2}, K_{1}^{\prime}\right)+2 \epsilon}
$$

in K_{2}. The result follows.

5. LOWER BOUND FOR d_{n}

Let μ be the equilibrium measure on K satisfying

$$
\mu(K)=1, \quad u_{u}(z)=\int g(z, \zeta) d \mu(\zeta) \leqslant 1 / C(K, \Omega)
$$

Let Ω_{1} be any open set satisfying

$$
K \subset \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega
$$

and whose boundary Γ is a finite union of rectifiable Jordan curves, oriented in the usual way for the Cauchy integral formula to hold in $\bar{\Omega}_{1}$.

Lemma 4. If \tilde{u}_{μ} is the (multiple valued) harmonic conjugate of u_{μ}, then

$$
\Delta_{z \in \Gamma} \tilde{u}_{\mu}(z)=-2 \pi
$$

Proof. Take any $\zeta \in K$ and let D be a disc containing ζ and contained in Ω_{1}. Since $g(z, \zeta)$ is harmonic for $z \in \Omega_{1}-D$,

$$
{\underset{r}{ }}^{\tilde{g}}(z, \zeta)=\Delta_{\partial D} \tilde{g}(z, \zeta) .
$$

Since $g(z, \zeta)+\log |z-\zeta|$ is harmonic in D

$$
\Delta_{\partial D} \tilde{g}(z, \zeta)=-\Delta_{\partial D} \arg (z-\zeta)=-2 \pi .
$$

Hence

$$
\Delta_{z \in \Gamma} \tilde{u}_{\mu}(z)=\int{\underset{z}{z E \Gamma}} \tilde{g}(z, \zeta) d \mu(\zeta)=-2 \pi .
$$

Remark. $C(K, \Omega) u_{\mu}(z)$ is equal, in $\Omega-K$, to the harmonic measure h of K with respect to $\Omega-K$. Therefore the lemma gives

$$
\Delta_{z \in \Gamma} \check{h}(z)=-C(K, \Omega) .
$$

But since $1-h$ is the harmonic measure of Ω^{\prime} with respect to $\Omega-K=K^{\prime}-\Omega^{\prime}$, and since $\bar{\Omega}_{1}{ }^{\prime}$ serves for $\Omega^{\prime}, K^{\prime}$ as Ω_{1} does for K, Ω, we deduce

$$
\Delta_{z \in \Gamma}(1-\tilde{h}(z))=-C\left(\Omega^{\prime}, K^{\prime}\right),
$$

where here Γ is described in the opposite direction. Thus

$$
C(K, \Omega)=C\left(\Omega^{\prime}, K^{\prime}\right)
$$

the relation asserted in section 2.

Lemma 5. Suppose Ω is a connected open set with finitely many boundary components none of which is a point, or is a finite disjoint union of such sets. Let $\gamma_{1}, \ldots, \gamma_{n}$ be a homology basis for Ω. Then there is a constant $M>0$ such that for any real numbers $\alpha_{1}, \ldots, \alpha_{n}$ there is a hamonic function h defined in Ω and satisfying

$$
\begin{gathered}
0 \leqslant h(z) \leqslant M \\
\Delta \hat{h}(z) \equiv \alpha_{i}(\bmod 2 \pi)
\end{gathered}
$$

Proof. We may assume first that Ω is connected, and second, since the problem is conformally invariant, that Ω is the region interior to a Jordan curve C_{0} and exterior to Jordan curves C_{1}, \ldots, C_{n}. If the result holds for one homology basis it holds for all, so we may assume further that each γ_{i} is homologous to C_{i}. Choose ζ_{i} interior to C_{i} and set

$$
m_{i}=\operatorname{dist}\left(\zeta_{i}, C_{i}\right)
$$

For any α_{i}, determine β_{i} by

$$
0 \leqslant \beta_{i}<1, \quad 2 \pi \beta_{i} \equiv \alpha_{i}(\bmod 2 \pi)
$$

and set

$$
h(z)=\Sigma \beta_{i}\left\{\log \left|z-\zeta_{i}\right|-\log m_{i}\right\}
$$

Then h satisfies the conditions of the lemma and has an upper bound M independent of the α_{i}.

The lower bound on d_{n} is obtained by constructing many functions in A which are not too much larger on Ω than on K. We start with

$$
e^{-n\left\{u_{\mu}(z)+i \tilde{u}_{\mu}(z)\right\}}
$$

which is

$$
e^{n / C(K, \Omega)}
$$

times as large on $\partial \Omega$ as on K. It is, however, not in A for two reasons: it is not single-valued, and it is not analytic on K. The first difficulty is easily dealt with by Lemma 5 . We assume Ω is of the form described in the statement of the lemma. Then we can find a multiple-valued function

$$
\psi(z)=e^{-(\hbar(z)+i \tilde{h}(z))}
$$

such that

$$
e^{-M} \leqslant|\psi(z)| \leqslant 1
$$

and such that

$$
\varphi(z)=\psi(z) e^{-n\left\{u_{\mu}(z)+i \bar{u}_{\mu}(z)\right\}}
$$

is single-valued in $\Omega-K$.
The modification of this function to one analytic also on K, without changing its crucial characteristic property of being not much larger on Ω than on K, is achieved by solving a certain Riemann boundary value problem. The open set Ω_{1} is as defined at the beginning of this section. We take Ω_{2} to be the complement of $\bar{\Omega}_{1}$, and as before Γ is the common boundary of Ω_{1} and Ω_{2}.

Lemma 6. Suppose we can find functions $f_{i}(i=1,2)$, analytic in Ω_{i} and continuous on $\bar{\Omega}_{i}$, whose boundary values satisfy

$$
\begin{equation*}
f_{1}(z)=\varphi(z) f_{2}(z), \quad z \in \Gamma \tag{14}
\end{equation*}
$$

Then the function

$$
f(z)=\left\{\begin{array}{l}
f_{1}(z), \quad z \in \Omega_{1} \\
\varphi(z) f_{2}(z), \quad z \in \bar{\Omega}_{2} \cap \Omega
\end{array}\right.
$$

is analytic in Ω and satisfies

$$
\sup _{z \in \Omega}|f(z)| \leqslant e^{M} e^{n / C(\Omega, K)} \max _{z \in K}|f(z)| .
$$

Proof. The analyticity of f follows immediately from the analyticity of its constituent parts and its continuity on Γ. We have

$$
\sup _{z \in \Omega}|f(z)|=\limsup _{z \rightarrow \partial \Omega}|f(z)|,
$$

and since Ω_{2} is a neighborhood of $\partial \Omega$ this is at most

$$
\lim _{z \rightarrow \partial \Omega}\left|f_{2}(z)\right|
$$

(Note that $|\varphi| \leqslant 1$.) Next consider the function

$$
g(z)=\left\{\begin{array}{l}
f_{1}(z) / \varphi(z), \quad z \in \Omega_{1}-K \\
f_{2}(z), \quad z \in \bar{\Omega}_{2}
\end{array}\right.
$$

which is analytic in K^{\prime}. At every regular point of ∂K the function φ has lim sup at most

$$
e^{M} e^{n / C(K, \Omega)}
$$

Thus $|g(z)|$ is bounded in K^{\prime} and at all regular points of ∂K has lim sup at most

$$
e^{M} e^{n / C(K, \Omega)} \max _{z \in K}|\hat{f}(z)|
$$

Consequently, by the maximum principle for subharmonic functions (see [7, Theorems III. 33 and III. 28]),

$$
\sup _{z \notin K}|g(z)| \leqslant e^{M} e^{n / C(K . \Omega)} \max _{z \in K}\left|f_{1}(z)\right| .
$$

In particular,

$$
\lim _{z \rightarrow \partial \Omega} \sup _{z \rightarrow}\left|f_{2}(z)\right| \leqslant e^{M} e^{n / C(K, \Omega)} \max _{z \in K}|f(z)|,
$$

and this gives the desired result.
We now give a sharp lower bound for d_{n} in certain cases.
Theorem 7. Suppose Ω is a connected open set with finitely many boundary components, or is a finite disjoint union of such sets. Then for some constant $a>0$ we have

$$
d_{n} \geqslant a e^{-n / C(K, \Omega)}
$$

Proof. Since adding an isolated boundary point to Ω changes neither d_{n} (by the theorem on removable singularities) nor $C(K, \Omega)$, we may assume Ω satisfies the hypothesis of Lemma 5.

It is well known that the dimension of the (linear) space E of solutions of (14) is

$$
\begin{align*}
N & =\frac{1}{2 \pi} \Delta_{z \in \Gamma} \arg \varphi(z) \tag{15}\\
& =\frac{1}{2 \pi} \Delta_{z \in \Gamma} \arg \psi(z)-\frac{n}{2 \pi} \Delta \tilde{u}_{z \in \Gamma}(z) .
\end{align*}
$$

See, for example, [3, section 16. 2], where (14) is shown for connected Ω_{1}; the general case is an easy consequence.

Since ψ is bounded and bounded away from zero, uniformly in n,

$$
\Delta_{z \in \Gamma} \arg \psi(z)
$$

is bounded. Therefore an application of Lemma 4 gives

$$
\begin{equation*}
N=n+O(1) \tag{16}
\end{equation*}
$$

Now let E_{N-1} be any linear space of continuous functions on K. Then since E has dimension N, we can find an $f \in E$ satisfying

$$
\max _{z \in K}|f(z)| \leqslant 1, \quad \operatorname{dist}\left(f, E_{N-1}\right)=1
$$

(See [6, p. 137].) If we apply Lemma 6 we find that the function

$$
e^{-M} e^{-n / C(K, \Omega)} f(z)
$$

belongs to A and has distance to E_{N-1} at least

$$
e^{-M} e^{-n / C(K, \Omega)}
$$

Therefore,

$$
d_{N-1} \geqslant e^{-M} e^{-n / C(K, \Omega)}
$$

and in view of (16) this establishes the theorem.
Remark. It is clear that the theorem holds for any open set for which the analogue of Lemma 4 is valid. It is a fact that for any open set we can find a harmonic function with conjugate having given periods, and so certainly periods in a given congruence class, but when bounds are needed it is another matter. There are many infinitely connected domains for which the required functions can be found, but it is not true for all domains. For example, one can show that it fails if Ω is the complement of a Cantor set.

We now state a weaker inequality in a more general situation.
Theorem 8. Suppose the complement of Ω has countably many (connected) components. Then

$$
\liminf _{n \rightarrow \infty} d_{n}^{1 / n} \geqslant e^{-1 / C(K, \Omega)}
$$

Proof. Suppose the components of Ω are the (open) sets $\Omega_{1}, \Omega_{2}, \ldots$, necessarily countable in number. Finitely many of the Ω_{i}, say $\Omega_{1}, \ldots, \Omega_{n}$, cover K. Clearly d_{n} for K and Ω is the same as d_{n} for K and $\Omega_{1} \cup \cdots \cup \Omega_{n}$, and

$$
C(K, \Omega)=C\left(K, \Omega_{1} \cup \cdots \cup \Omega_{n}\right)
$$

Moreover, any component of $\left(\Omega_{1} \cup \cdots \cup \Omega_{n}\right)^{\prime}$ contains either a component of Ω^{\prime} or one of the sets $\Omega_{n+1}, \Omega_{n+2}, \ldots$ It follows that $\left(\Omega_{1} \cup \cdots \cup \Omega_{n}\right)^{\prime}$ can have only countably many components. Thus we may assume to begin with that $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{n}$.

Denote the components of Ω^{\prime} by C_{1}, C_{2}, \ldots, and set

$$
\Omega^{(m)}=\left(C_{1} \cup \cdots \cup C_{m}\right)^{\prime} .
$$

Since

$$
\Omega^{(m)}=\Omega_{1} \cup \cdots \cup \Omega_{n} \cup C_{m+1} \cup C_{m_{+2}} \cup \cdots
$$

and each C_{j} meets some $\bar{\Omega}_{i}(1 \leqslant i \leqslant n)$, each component of $\Omega^{(m)}$ contains some Ω_{i}. There are therefore only finitely many (at most n) such components. Thus both $\Omega^{(m)}$ and its complement have finitely many components, so $\Omega^{(m)}$ satisfies the conditions of Theorem 7.
Now as $m \rightarrow \infty$ the $\Omega^{(m)}$ decrease and have intersection Ω. Since d_{n} increases with decreasing Ω, the statement of the theorem follows from fact (d) and Theorem 7.

6. LOWER BOUND FOR r_{n}

The idea is really not much different from [5, Section 6], where it was assumed that K consisted of Jordan curves. It is a matter essentially of applying Rouchés theorem to prove that if a certain approximation is very close on K then the approximating rational function has a large number of zeros and is therefore of large degree. However, in the more general case K may have no interior and we first have to deduce approximations near K from those on K, and this is slightly complicated technically.

We shall denote by $G(z, \zeta)$ Green's function for K^{\prime}, the complement of K. For any positive Borel measure v on K^{t} we write

$$
v_{\nu}(z)=\int G(z, \zeta) d v(\zeta)
$$

Lemma 9. Suppose K has finitely many components none of which is a single point, let U be an open set containing K, and let $\epsilon>0$. Then there is a $\delta>0$ with the following property: for any ν satisfying $\nu\left(K^{\prime}\right)=1$ there is an open set V satisfying

$$
\begin{array}{r}
K \subset V \subset \bar{V} \subset U \\
\operatorname{dist}(K, \partial V) \geqslant \delta, \\
\sup _{z \in \partial V} v_{\nu}(z) \leqslant \epsilon
\end{array}
$$

Proof. We may clearly suppose K is itself comnected, and then, since
the situation is conformally invariant, we may even assume K is the closed unit disc. Green's function for K^{\prime} is

$$
\begin{equation*}
G(z, \zeta)=\log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| \tag{17}
\end{equation*}
$$

We suppose that U contains the disc

$$
|z| \leqslant r \quad(r>1)
$$

Define

$$
v_{n}(z)=\int \max \{G(z, \zeta), n\} d v(\zeta)
$$

so that v_{n} is continuous and

$$
v_{n}(z) \not \nearrow v(z)
$$

Let

$$
S_{n}=\left\{z: v_{n}(z) \geqslant \epsilon\right\} \cap\{z: 1<|z| \leqslant r\}
$$

We concentrate first on the nontrivial case when S_{n} is nonempty. Observe that since v_{n} is continuous S_{n} is relatively closed in K^{\prime}.

Let $S_{n}{ }^{*}$ denote the set of radii ρ for which the circle $|z|=\rho$ intersects S_{n}, and let δ_{n} be the smallest number such that

$$
\left[1+\delta_{n}, r\right] \subset S_{n}^{*}
$$

We shall find a positive lower bound on δ_{n}, independent of n and of ν.
Let μ be the equilibrium measure for the Green capacity $C\left(S_{n}, K^{\prime}\right)$, so that μ is supported on S_{n},

$$
\mu\left(S_{n}\right)=1, \quad \int G(z, \zeta) d \mu(z) \leqslant 1 / C\left(S_{n}, K^{\prime}\right)
$$

Then we have

$$
\begin{aligned}
\epsilon & \leqslant \int v_{n}(z) d \mu(z) \leqslant \int d \mu(z) \int G(z, \zeta) d \nu(\zeta) \\
& =\int d v(\zeta) \int G(z, \zeta) d \mu(z) \leqslant 1 / C\left(S_{n}, K^{\prime}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
C\left(S_{n}, K^{\prime}\right) \leqslant 1 / \epsilon \tag{18}
\end{equation*}
$$

Let

$$
A_{k}=S_{n} \cap\left\{z: 1+e^{-2 k} \leqslant|z| \leqslant 1+e^{-2 k+1}\right\} \quad k=1,2, \ldots
$$

The full interval

$$
\left[1+e^{-2 k}, 1+e^{-2 k+1}\right]
$$

belongs to A_{k}^{*} (this has the relation to A_{k} that $S_{n} *$ does to S_{n}) if

$$
k_{0} \leqslant k \leqslant k_{1}
$$

where

$$
\begin{align*}
& k_{0}=\frac{1}{2}(1-\log r), \\
& k_{1}=\frac{1}{2} \log \delta_{n}^{-1} . \tag{19}
\end{align*}
$$

k_{0} is fixed and we want an upper bound on k_{1}.
Now the ordinary logarithmic capacity of A_{k} is at least $\frac{1}{4}$ of the linear measure of A_{k}^{*} [7, Corollary 6, p. 85], and this is at least $a_{1} e^{-2 k}$ where a_{1} is a positive constant. Hence we can find a measure μ_{k} on A_{k} satisfying

$$
\mu_{k}\left(A_{k}\right)=1, \quad \int \log \frac{1}{|z-\zeta|} d \mu_{k}(\zeta) \leqslant 2 k+\log a_{1}^{-1}
$$

It follows [see (17)] that

$$
\begin{equation*}
\iint G(z, \zeta) d \mu_{k}(\zeta) d \mu_{k}(z) \leqslant 2 \tilde{k}+a_{2} \tag{20}
\end{equation*}
$$

for another constant a_{2}.
If $z \in A_{k}, \zeta \in A_{i+j}(j>0)$, then

$$
\begin{gathered}
|z| \geqslant 1+e^{-2 k}, \quad|\zeta| \leqslant 1+e^{-2(k+j)+1} \\
\left|\zeta-\bar{\zeta}^{-1}\right|=|\zeta|-|\zeta|^{-1} \leqslant 2 e^{-2(k+j)+1}
\end{gathered}
$$

Since

$$
\frac{\bar{\zeta} z-1}{z-\bar{\zeta}}=\bar{\zeta}\left[1+\frac{\zeta-\bar{\zeta}-1}{z-\bar{\zeta}}\right]
$$

we have

$$
\begin{aligned}
G(z, \zeta) & \leqslant e^{-2(z+j)+1}+\frac{2 e^{-2(k+j)+1}}{e^{-2 k}-e^{-2(k+j)+1}} \\
& \leqslant e^{-2 j}+\frac{2 e^{-2 j+1}}{1-e^{-2 j+1}}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
G(z, \zeta) \leqslant a_{3} e^{-2 j}, \quad z \in A_{l}, \quad \zeta \in A_{k+j} \tag{21}
\end{equation*}
$$

Let μ be the measure

$$
\mu=\sum_{k=k_{0}}^{k_{1}} k^{-1} \mu_{k}
$$

on S_{n}. Then

$$
\mu\left(S_{n}\right) \geqslant \log k_{1}-a_{4}
$$

and

$$
\begin{aligned}
\iint G(z, \zeta) d \mu(\zeta) d \mu(z)= & \sum_{k=k_{0}}^{k_{1}} k^{-2} \iint G(z, \zeta) d \mu_{k}(\zeta) d \mu_{k}(z) \\
& +2 \sum_{k==k_{0}}^{k_{1}} k^{-1} \sum_{j=1}^{k_{1}-k} \iint G(z, \zeta) d \mu_{k+j}(\zeta) d \mu_{k}(\zeta)
\end{aligned}
$$

By (20) and (21) this is at most

$$
a_{5} \log k_{1}+a_{6}
$$

But since $C\left(S_{n}, K^{\prime}\right)$ is equal to the least upper bound of the ratios

$$
\mu\left(S_{n}\right)^{2} / \iint G(z, \zeta) d \mu(\zeta) d \mu(z)
$$

taken over all μ supported on S_{n}, we deduce

$$
C\left(S_{n}, K\right) \geqslant a_{7} \log k_{1}-a_{8}
$$

Combining this with (18) and (19) gives

$$
\log \log \delta_{n}^{-1} \leqslant a_{9} \epsilon^{-1}
$$

It follows from this bound, and the way δ_{n} was defined, that for some constant $\delta>0$ depending only on ϵ there is for each n a ρ_{n} in

$$
1+\delta \leqslant \rho_{n} \leqslant r
$$

such that

$$
v_{n}(z)<\epsilon \quad \text { on } \quad|z|=\rho_{n}
$$

This was derived under the assumption that S_{n} was nonempty. But if S_{n} is empty we simply take $\rho_{n}=r$. An application of Fatou's lemma shows that

$$
v(z) \leqslant \epsilon \quad \text { on } \quad|z|=\rho
$$

for any limit point ρ of the sequence $\left\{\rho_{n}\right\}$. Thus we may take V to be any one of the discs $|z|<\rho$ and the lemma is established.

Theorem 10. Suppose K and the complement of Ω have countably many connected components. Then

$$
\liminf _{n \rightarrow \infty} r_{n}^{1 / n} \geqslant e^{-1 / C(K, a)}
$$

Proof. We consider only the case where K and Ω^{\prime} have finitely many components, none a single point. The general result is deduced as in the proof of Theorem 8.
The harmonic measure of $\partial \Omega$ in $\Omega-K$ is at most ϵ in some neighborhood U of K. This implies, by the maximum principle, that if $\sigma(z)$ is subharmonic in $\Omega-K$ and satisfies

$$
\sigma(z) \leqslant 0
$$

there, then

$$
\begin{equation*}
\sigma(z) \leqslant(1-\epsilon) \lim _{\xi \rightarrow \delta K} \sup \sigma(\zeta), \quad z \in U-K . \tag{22}
\end{equation*}
$$

Having found U, we let δ be as in Lemma 9 , and set

$$
W=\{z \in U: \operatorname{dist}(z, K) \geqslant \delta\} .
$$

What follows next is very similar to the construction of Lemma 1. Let u_{μ} once again denote the equilibrium potential for K, so that

$$
\mu(K)=1, \quad u_{\mu}(z)=\int g(z, \zeta) d \mu(\zeta) \leqslant 1 / C(K, \Omega)
$$

Since $g(z, \zeta)$ is continuous for $z \in W, \zeta \in K$ we can find points $\zeta_{i} \in K$ and numbers α_{i} satisfying

$$
\alpha_{i}>0, \quad \sum \alpha_{i}=1
$$

such that

$$
\sum \alpha_{i} g\left(z, \zeta_{i}\right)<1 / C(K, \Omega)+\epsilon, \quad z \in W
$$

Next, given $n>0$ we can find numbers a_{i} satisfying

$$
\left|a_{i}-\alpha_{i}\right| \leqslant n^{-1}, \quad \sum a_{i}=1
$$

such that each $n a_{i}$ is an integer. Then for large enough n we shall have

$$
\sum a_{i} g\left(z, \zeta_{i}\right)<1 / C(K, \Omega)+2 \epsilon, \quad z \in W .
$$

If we write

$$
h(z)=\sum a_{i} g\left(z, \zeta_{i}\right)
$$

then it follows from Lemma 5 that we can find

$$
\psi(z)=e^{-\{h(z)+i \tilde{h}(z)\}}
$$

satisfying

$$
e^{-M} \leqslant|\psi(z)| \leqslant 1
$$

such that

$$
f(z)=\psi(z) e^{-n\left\{u_{\mu}(z)+i \tilde{u}_{\mu}(z)\right\}}
$$

is single-valued in Ω, and so belongs to A. We shall find a lower bound on $r_{n-1}(f)$

Let R be a rational function of degree $\leqslant n-1$ such that

$$
\max _{z \Xi K}|f(z)-R(z)|=r_{n-1}(f) .
$$

Denote by ξ_{i} the poles of R (all lying outside K) and by v the potential

$$
v(z)=\sum G\left(z, \xi_{j}\right)
$$

The corresponding measure ν, giving measure 1 to each $\left\{\xi_{j}\right\}$, satisfies

$$
\nu\left(K^{\prime}\right)<n
$$

Let us estimate

$$
|f(z)-R(z)| e^{-v(z)}
$$

We have, first,

$$
|f(z)| e^{-v(z)} \leqslant 1, \quad z \in \Omega-K
$$

Second,

$$
|\boldsymbol{R}(z)| e^{-v(z)}
$$

is subharmonic in K^{\prime} and so

$$
|R(z)| e^{-v(z)} \leqslant \max _{z \in K}|R(z)| \leqslant 2, \quad z \in K^{\prime}
$$

if, as we may certainly assume, $r_{n-1}(f) \leqslant 1$. Hence

$$
|f(z)-R(z)| e^{-v(z)} \leqslant 3, \quad z \in \Omega-K
$$

It follows from (22) that consequently

$$
|f(z)-R(z)| e^{-v(z)} \leqslant 3 r_{n-1}(f)^{1-\epsilon}, \quad z \in U-K
$$

In particular this holds for $z \in W$.
Let us now apply Lemma 9. There is an open set V, containing K and with $\partial V \subset W$, for which

$$
\sup _{z \in \hat{\partial} V} v(z) \leqslant \epsilon n .
$$

Then

$$
\max _{z \in \partial \hat{}}|f(z)-R(z)| \leqslant 3 e^{\epsilon n} r_{z-1}(f)^{1-\epsilon}
$$

However, R has at most $n-1$ zeros in V and f has zeros in V of total multiplicity

$$
\sum n a_{i}=n .
$$

Therefore by Rouché's theorem the above maximum is at least equal to

$$
\min _{z \in \partial V}|f(z)| \geqslant e^{-M} e^{-n / C(K, \Omega)+2 \epsilon}
$$

Since $\epsilon>0$ was arbitrary the theorem is proved.

References

1. M. Brelot, "Éléments de la Théorie Classique du Potential," Centre Doc. Univ, Paris, 1965.
2. V. D. Erokin, Best linear approximations of functions analytically continuable from a given continuum into a given region, Russ. Math. Surveys 23 (1968), 93-135.
3. F. D. Gakhov, "Boundary Value Problems," Pergamon Press, New York, 1965.
4. A. A. GončAr, Generalized analytic continuation (Russian), Mat. Sbornik 118 (1968), 135-146.
5. A. L. Levin and V. M. Tikhomirov, On a theorem of Erokhin, Appendix to [2].
6. G. G. Lorentz, "Approximation of functions," Holt, Rinehart and Winston, New York, 1966.
7. M. Tsusf, "Potential Theory in Modern Function Theory," Maruzen, Tokyo, 1959.
8. J. L. Walsh, "Interpolation and approximation by rational functions in the complex domain," Colloq. Publ. Vol. 20, American Mathematical Society, Providence, RI, 1960.
9. H. Widom, An inequality for rational functions, Proc. Amer. Math. Soc., 24 (1970), 415-416.

[^0]: * Supported by Air Force grant AFOSR-69-1638 at the University of California, Santa Cruz, CA.

